
Matroid Theory Implementation

William Andrews

August 8, 2025

https://github.com/William-Thomas-Andrews/Matroid Algorithms

Figure 1: A Vámos matroid

“Matroids take ‘It’s useful to have multiple perspectives on this thing’ to a ridiculous extent.”

- anonymous

1

https://github.com/William-Thomas-Andrews/Matroid_Algorithms

1 Introduction

Algebraic structures that can be ‘solved’ by greedy algorithms can be abstracted into one algebraic structure: the matroid.

‘Solved’ in this context is referring to a set being independent, and ‘unsolved’ is when the set is dependent. The independence

and dependence differ for each algebraic structure, but always exist as a certain condition evaluating the arrangement and

existence of the elements in that structure. Some of the more common and easy to comprehend algebraic structures that are

used in matroids are: graphs, vector spaces, bipartite graphs, and partition sets. We will be reviewing all of these.

2 Definition of a Matroid

A matroid is defined as an ordered pair M(E, I) where E is a finite set, referred to as the ground set, and I is a collection of

independent subsets of E (each independent subset denoted by Ik ∈ I, for some k ∈ N) which satisfy the following properties:

• Property 1: ∅ ∈ I.

• Property 2: If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

• Property 3: If I1 ∈ I and I2 ∈ I and |I1| < |I2|, then there is an element e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

Property 1 states that the empty set is an independent subset of E. Property 2 states that if the set I1 is an independent

subset of E and the set I2 is a subset of I1, then I2 is also an independent subset of E. Property 3 states that if the sets

I1 and I2 are independent subsets of E and the cardinality (the dimension) of I1 is less than I2, then there is an element e

which is in I2 but not in I1 such that I1 ∪ {e} ∈ I.

• Weight: Each element of a ground set can have a weight, and the weight of each set is the sum of the weights of each

element. This concept of weight is integral to our algorithms. Weight can be seen particularly in the graph example of

a matroid to be the weight of each edge of the graph.

• Span: The span of a set of elements is the set formed by the elements that can be written as combinations of the

elements that belong to the given set. In terms of linear algebra, the span of a set of vectors, also called linear span,

is the linear space formed by all the vectors that can be written as linear combinations of the vectors belonging to the

given set.

• Basis: An independent set of maximal size.

• Dimension: Dimension refers to the number of independent parameters required to specify an element in a space or a

system, or in other words: the number of elements of the independent set of maximal size.

• Oracle: The Oracle Model is a black-box model used to represent a matroid, providing a way to access information

about the matroid’s structure and properties.

Theorem: All bases of a matroid have the same cardinality.

Proof. Let us assume that there are two bases of a matroid M : B1 and B2, with different cardinalities, and without loss of

generality, assume that |B1| < |B2|. Since B1 and B2 are bases, then by the definition of a basis, they are independent and

cannot get any larger. However, by Property 3, there exists e ∈ B2\B1 such that B1 ∪ {e} ∈ I, which contradicts that B1

cannot be a base which has a maximal size. Therefore either B1 is not in fact a base, or our assumption is wrong and the two

bases have the same cardinality.

2

3 The Greedy Algorithm

Here is an overview of the algorithm and the format for the code. We have separate class files for each algebraic structure

which we input to the Matroid class. The Oracle class serves one purpose: to tell us whether the inputted algebraic structure

is independent or not, given the specific structure’s conditions for independence. The Matroid class is listed below:

1 // The SET being the type of input set (e.g. Graph , or a Matrix)

2 // The ELEMENT being the corresponding element for each set (e.g. Edge for graphs , and Vector

for matrices)

3 template <class SET , typename ELEMENT >

4 class Matroid {

5 private:

6 SET ground_set;

7 SET solution_set;

8 Oracle <SET , ELEMENT > oracle;

9 public:

10 Matroid () : ground_set(SET()), solution_set(SET()) {}

11 Matroid(SET& input_set) : ground_set(SET(input_set)), solution_set(SET()) {}

12 Matroid(SET& input_set , SET& other_set) : ground_set(SET(input_set)),

13 solution_set(SET(other_set)) {

14 while (!(solution_set.get_vertices ().empty())) {

15 solution_set.remove_element ();

16 }

17 }

18

19 // Minimum Greedy Algorithm

20 SET min_optimize_matroid () {

21 ground_set.min_sort (); // For minimum basis

22 while (ground_set.not_empty ()) {

23 ELEMENT e = ground_set.top();

24 if (oracle.independent(solution_set , e)) solution_set.add_element(e);

25 ground_set.pop();

26 }

27 return solution_set;

28 }

29

30 // Maximum Greedy Algorithm

31 SET max_optimize_matroid () {

32 ground_set.max_sort (); // For maximum basis

33 while (ground_set.not_empty ()) {

34 ELEMENT e = ground_set.top();

35 if (oracle.independent(solution_set , e)) solution_set.add_element(e);

36 ground_set.pop();

37 }

38 return solution_set;

39 }

40 };

3

The mathematical version of this algorithm can be summarized with this figure in pseudo-code below. It accepts the

matroid M = (E, I), and the weight function w(·) (outputs the weight for any given element input) which is essential for

the sorting algorithm max sort. The algorithm returns the solution set of the maximum weighted spanning independent set,

given the input matroid.

Algorithm 1 The Matroid Greedy Algorithm (Maximization)

1: Input: Matroid M = (E, I), w(·).
2: Output: Maximum element in A
3: max sort(E)
4: S ← ∅
5: while E ̸= ∅ do
6: e← top(E) ▷ This gets the top (maximum) value of the ground set and assigns it to e.
7: if {e} ∪ S ∈ I then ▷ This line is equivalent to asking the oracle if e added to S would still be independent.
8: add e to S
9: end if

10: pop(E) ▷ This pops the top (maximum) value in the ground set
11: end while
12: return S

To begin, we sort the ground set E, then we assign S to be the empty set (because it is the solution set we will append

to). Next, we begin the while loop which runs on the condition that E is not empty. Then we assign an element e to be the

top value (the maximal value in this case) of the ground set E. Since E is already sorted from line 3, this is a constant time

operation.

Then we enter an if condition that asks if {e} ∪ S ∈ I, or in other words, it asks if top element e appended to solution

set S is an independent set, since I is a collection of independent subsets of E which satisfy Property 1, Property 2, and

Property 3. If true (if the addition of e to S would result in a still independent solution set), then we add e to S. If not,

then we continue. Regardless of the if condition, we pop the top value from E (which was the value that was assigned to e)

and continue to the beginning of the while loop again.

One interesting thing to note is that the set I has a size so large, that it is not feasible to generate it in computation, and

hence only works theoretically. For example, let us look at a graphic matroid. In this sense, an independent graph has no

cycles and a dependent graph has cycles (dependency is based on cyclicity), and the span of a graph is the amount of different

nodes the tree reaches, so the set I essentially represents all the different paths of the graph that contain no cycles (which

obey the basic three matroid properties by default). For reference, there is a ‘cycle’ if and only if there exists a non-empty

‘path’ in which the first and last vertices are equal. A ‘path’ is a finite or infinite sequence of edges which joins a sequence

of vertices which, by most definitions, are all distinct. The ‘weight’ of each edge is given by weight = w(u, v), where u and v

are nodes.

If we were to try to find all the paths that would make up I, we would be operating with O(N !) time. This is not feasible.

Then how can we proceed? The answer is, instead of asking if {e} ∪ S ∈ I in line 7 by creating I and iterating through it,

we rather use an oracle and ask it if the given set {e} ∪ S is independent working with only the set in front of us. With this

method we evaluate dependency based on some set characteristics, not based on creating and checking whether the input is

in I. This is presumably much faster than creating and evaluating all of I. The check for independence that the oracle uses

is different for each matroid (i.e. linear independence check for matrices, the cycle check using union find for graphs, etc.)

which we will dive deeper into when we disucss Matroid Variations. However, besides the varying independence conditions,

the algorithm is the exact same for each type of set.

Now we will look at the algorithm in the code I implemented to see how this mathematical algorithm can actually be

adapted to be used in real life. In the matroid class, there are two functions for the algorithm: min optimize matroid() and

max optimize matroid(), which represent the greedy algorithm that minimizes the weight of a ground set, and the greedy

algorithm that maximizes the weight of a ground set. They are almost the same function, with the difference being one

minimizes and the other maximizes. Let’s take a look at the max optimize matroid() function:

4

1 // Maximum Greedy Algorithm

2 SET max_optimize_matroid () {

3 ground_set.max_sort (); // For maximum basis

4 while (ground_set.not_empty ()) {

5 ELEMENT e = ground_set.top();

6 if (oracle.independent(solution_set , e)) solution_set.add_element(e);

7 ground_set.pop();

8 }

9 return solution_set;

10 }

The algorithm setup is quite simple. As seen from the Matroid class code given above, in the problem setup, we initially

create a ground set object ground set of the same type as the input set of type SET (graph, matrix, bipartite graph, etc.),

and we also create a solution set object solution set also of type SET. Next, we create an oracle object called oracle which

is an instance of the Oracle class with template inputs SET and ELEMENT, where ELEMENT is the corresponding element type

of the given SET.

The reason why we need ELEMENT to be specified in addition to SET is because all these setup operations are performed

during compile time, and to deduce the element type of a given SET is runtime behavior which happens after the compile

time procedure. That erroneous sequence of events is akin to, for example, taking a math test and not studying for a certain

section of it, expecting to use the answer sheet you will receive after taking the test to answer it during the test, so to avoid

this compile time error, the instantiation must be specified with both types

Oracle<SET, ELEMENT>.

To reiterate, mathematically we have now a ground set (G, or ground set), a solution set (S, or solution set), and an

oracle (Oracle). All we do next is sort the ground set and iterate through its top values, asking the oracle whether this new

addition yields a dependent or independent solution set. If the new maximal (top) value e makes the solution set now

dependent when appended to it, we discard that e. If the new maximal emakes solution set still independent when appended

to it, we go ahead and append that e to solution set. Regardless of the if statement, we still perform ground set.pop()

to pop off that used e and begin the while loop again.

This same algorithm can maximize the independent basis for graphs, matrices, and many more structures, so long as the

structure is a matroid! Since the concept of a greedy algorithm is universal for matroids, we can generalize it to take in as

input different templated type inputs to perform the same algorithm on different structures. Isn’t that remarkable?

That little piece of code solves problems in graph theory, linear algebra, basic set theory, and many more fields. Now let’s

take a look at the specific uses of this algorithm and respective code implementations.

5

4 Matroid Variations

4.1 Graphic Matroid:

A graphic matroid M = (E, I) is a matroid that uses a graph as its algebraic structure. Let our graph in this case be denoted

as G. The ground set E consists of the set of edges of the graph G, and I is the set of all independent subsets of E. We

consider a set of edges to be dependent if there is a ‘cycle’ in the set. There is a ‘cycle’ if and only if there exists a non-empty

path in which the first and last vertices are equal. A path is a finite or infinite sequence of edges which joins a sequence of

vertices which, by most definitions, are all distinct. The weight of each edge is given by weight = w(u, v), where u and v are

nodes.

Example: Let graph G be

a b c

d e

f g

5 2

3 4

6

7 1

8

9

Figure 2: An example graph

with the ground set defined as E = {(f, g), (d, f), (d, e), (e, g), (c, g), (b, e), (a, d), (a, b), (b, c)}. Although the whole ground

set of G spans G, it is also cyclic, so E is not an independent base.

Algorithm: This algorithm is essentially a modified version of Kruskal’s algorithm which has a time complexity of

O(Eg logEg), where Eg is the number of edges in the graph. In this example, we will be maximizing the resulting matroid, or

in other words, creating a maximum spanning tree. We initially set the solution set S = ∅. We proceed by sorting the edges

in E to have the maximum value at the top, using the weight function w(u, v). This now results in

max sort(E) = {(c, g), (f, g), (d, f), (d, e), (a, b), (b, e), (a, d), (b, c), (e, g)}.

and for simplicity, E ← max sort(E)

Since E is clearly not empty, we take top(E) = (c, g), and check if (c, g) added to S (S is currently an empty graph) is

independent. {(c, g)}∪S = {(c, g)}, and (c, g) does not create a cycle, so we add {(c, g)} to S, so S ← {(c, g)}∪S. To finish up

this loop, we pop edge (c, g) out of E by calling pop(E), so now we have E = {(f, g), (d, f), (d, e), (a, b), (b, e), (a, d), (b, c), (e, g)},
and S = {(c, g)}

Now we can begin the next step in the while loop, since E is not empty. We take top(E) = (f, g) and since ({f, g)}∪S also

does not result in a cycle, we perform S ← {(f, g)}∪S, and pop(E). Now we have, E = {(d, f), (d, e), (a, b), (b, e), (a, d), (b, c), (e, g)},
and S = {(c, g), (f, g)}.

Let us continue until we reach the maximum spanning tree shown below (the edges in S are highlighted in red):

6

a b c

d e

f g

5 2

3 4

6

7 1

8

9

Figure 3: A solved example graph

with E = {(a, d), (b, c), (e, g)} and S = {(c, g), (d, f), (d, e), (a, b), (b, e)}. If we want to optimize this algorithm we can set

a marker value the number of nodes of the ground set E, and if the number of nodes in the solution set S reaches the number

of nodes in E, we stop because any new addition will cause a cycle (union find will find that we would be trying to connect

the same partition together).

However, let us continue to show how this algorithm works with this next iteration. Next we get the top value of E to be

(a, d), and since {(a, d)} ∪ S results in a cycle by union find, we discard it and pop the top value of E. Then we do the same

for (b, c) and (e, g) which both result in cycles, so our final result is:

E = ∅ and S = {(c, g), (d, f), (d, e), (a, b), (b, e)}

and we have just found the maximum spanning tree of a graph! The minimizing version of this matroid algorithm finds

the minimum spanning tree of a graph.

Our Graph class is listed below, with some parts omitted for simplicity.

1 // The input set for a Graphic Matroid

2 class Graph {

3

4 private:

5 std::vector <Edge > edges;

6 UnionFind union_set;

7

8 public:

9 Graph(std::vector <std::tuple <Vertex , Vertex , Weight >> input_data) :

10 union_set(UnionFind(input_data.size())) {

11 for (auto x : input_data) {

12 Edge e = Edge(std::get <0>(x), std::get <1>(x), std::get <2>(x));

13 this ->add_element(e);

14 union_set.union_operation(e.get_left (), e.get_right ());

15 }

16 }

17

18 // Matroid functions begin ---

19 void min_sort () {

20 std::sort(edges.begin(), edges.end(), MinCompare <Edge >{});

21 }

22

7

23 void max_sort () {

24 std::sort(edges.begin(), edges.end(), MaxCompare <Edge >{});

25 }

26

27 bool not_empty () {

28 return (!edges.empty ());

29 }

30

31 Edge top() {

32 if (edges.empty ()) { throw std:: runtime_error("Cannot get first element of an empty

graph"); }

33 else {

34 return edges[edges.size() -1];

35 }

36 }

37

38 // If adding Edge e does not create a cycle then it will return true

39 bool is_independent(Edge& e) {

40 // If both sides of the edge are in the same partition , then it creates a cycle and

we return false because adding ‘e’ is not valid if we want to keep the graph

acyclic.

41 // Otherwise return true because both parititions are disjoint

42 return (!(union_set.find_operation(e.get_left ()) == union_set.find_operation(e.

get_right ())));

43 }

44

45 void add_element(Edge e) {

46 edges.push_back(e);

47 union_set.union_operation(e.get_left (), e.get_right ());

48 }

49

50 void pop() {

51 edges.pop_back ();

52 }

53 // Matroid functions end ---

54 };

8

4.2 Linear Matroid:

The head of the Matrix class is listed below:

1 // The input set for a Linear Matroid

2 class Matrix {

3 private:

4 int rows;

5 int columns;

6 std::vector <Vector > data; // columns entries of row vectors

and the head of the Vector class is listed below:

1 class Vector {

2 private:

3 std::vector <double > data;

4 double weight = 0;

The Matrix class consists of a std::vector of objects of the Vector class, and each Vector contains a std::vector of

doubles, and a weight that gets adjusted to be the sum of the weighted elements from the Vector.

Example: Here is an example of the maximizing matroid algorithm used on a linear matroid. Let the matrix M be over

the integers:

M =

1 0 1 0 1

0 3 4 0 0

0 0 0 2 3


Each column corresponds to an element ei in the ground set E = {e1, e2, e3, e4, e5}. Let the weight of each element be the

sum of the elements:

Element Column Vector Weight

e1

10
0

 1

e2

03
0

 3

e3

14
0

 5

e4

00
2

 2

e5

10
3

 4

9

Algorithm: We first create the solution set S ← ∅ and sort M by weight. Now we have the sorted matrix:

max sort(M) =

1 1 0 0 1

4 0 3 0 0

0 3 0 2 0


and for simplicity, M ← max sort(M).

we then append the top column vector e3 to the empty matrix S because

{e3} ∪ S =

1

4

0


is linearly independent by basic linear algebra rules. So now S ← {e3} ∪ S. We continue to the next step and get

{e5} ∪ S =

1 1

4 0

0 3


which is also linearly independent, so S ← {e5}∪S. In the next step we try to add e2, but that would result in the matrix

{e2} ∪ S =

1 0 1

4 3 0

0 0 3


which is linearly dependent, so we do not change S and move on to the next column vector in the sorted matrix. We

eventually arrive at the maximum basis (the maximum spanning linearly independent matrix):

S =

1 1 1

0 4 0

0 0 3

 .

In code, this is accomplished by the functions in our Matroid class. It is fascinating that the only difference between this

algorithm and the graph algorithm is the input set type (matrix vs. graph). The same procedure and functions are used

because they are essentially the same problem but in vastly different contexts.

The independence function (which uses Gaussian elimination and linear independence) for the Matrix class is as follows:

1 bool is_independent(Vector& v) {

2 // First to check if it is the zero vector

3 if (v.is_zero ()) return false; // If yes , then it returns false because adding the zero

vector makes the matrix linearly dependent

4 Matrix A = *this;

5 A.add_element(v);

6 row_reduce(A);

7 int rank_A = rank(A);

8 int rank_this = rank(*this);

9 if (rank_A == rank_this) return false;

10 return true;

11 }

10

4.3 Partition Matroid:

A partition matroid is a matroid that is so abstract that it is just plain simple. In the way I implemented it, its data is made

up of a std::vector of my custom ParitionPair class which is just a modified std::tuple, with an extra attribute of an

int of the partition of the pair.

The set’s elements are partition pairs. The set’s independence check is based on the partitions of its elements: if all of the

set’s elements have different partitions, then the set is independent, and if at least one of the set’s elements have the same

partition as another element, then the set is dependent.

The PartitionMatroid class is listed (with some functions omitted for simplicity) below:

1 class PartitionMatroid {

2 private:

3 std::vector <PartitionPair > set;

4 public:

5 PartitionMatroid () {}

6 PartitionMatroid(std::vector <PartitionPair >& input) : set(input) {}

7

8 // Matroid functions begin --

9 void min_sort () {

10 std::sort(set.begin(), set.end(), MinCompare <PartitionPair >{});

11 }

12

13 void max_sort () {

14 std::sort(set.begin(), set.end(), MaxCompare <PartitionPair >{});

15 }

16

17 bool not_empty () {

18 return (!set.empty ());

19 }

20

21 PartitionPair top() {

22 if (set.empty ()) { throw std:: runtime_error("Cannot get first element of an empty

graph"); }

23 else {

24 return set[set.size() -1];

25 }

26 }

27

28 // If element e does not share the same partition with another element already in the

set then it will return true

29 bool is_independent(PartitionPair& e) {

30 for (int i = 0; i < set.size(); i++) {

31 if (e.get_partition () == set[i]. get_partition ()) { // if we are about to add an

element with the same partition as a previous element

32 return false;

33 }

34 }

35 return true;

36

37 }

38

39 void add_element(PartitionPair e) {

11

40 set.push_back(e);

41 }

42

43 void pop() {

44 set.pop_back ();

45 }

46 // Matroid functions end --

47 };

The algorithm is simply the same greedy algorithm listed multiple times above, that sorts the ground set E, then loops

through the top values and chooses whether or not independence is maintained. If independence is maintained with an addition

of a PartitionPair, then we add it. If not then we move on until we have evaluated all elements.

Figure 4: An example of a partition graph set

12

4.4 Bipartite Matroid:

Our BipartiteGraph class contains the object

std::vector<std::vector<BipartiteEdge>> edges;

which consists of BipartiteEdge objects. This class is similar to our Graph class but has extra checks to make sure that

the bipartite property is maintained. A bipartite graph is a graph where the vertices can be divided into two disjoint sets such

that all edges connect a vertex in one set to a vertex in another set. There are no edges between vertices within any given

disjoint set. Below is an example of a bipartite graph:

x1

x2

x3

y1

y2

y3

y4

Left set X Right set Y

If any of the elements from X were connected to another element from X, then the graph would not be bipartite (without

loss of generality for Y). Below is an example of a graph that is not bipartite:

a b

c

Algorithm: The algorithm is the same greedy matroid algorithm we have been using but with a different application. It is

very similar to the standard graph matroid but the dependency conditions are slightly different. The standard graph matroid

maintains independency by maintaining acyclicity, while the bipartite graph matroid maintains independency by making sure

that in a graph with two partitions, no vertices from one set are connected to the same set (this inherantly maintians acyclicity

too).

First we get the inputs: the ground set based off the bipartite graph data E, and the weight function w(u, v). Then we

set the solution set S = ∅ and sort the ground set.

To begin the body of the algorithm, we again start the for loop by checking if E is empty, and if not, we proceed. Then we

check if the top value from E added to the solution bipartite graph yields an acyclic bipartite graph (maintains independency),

and if so, we add it to the solution set S and pop the top element from E and repeat just like the past algorithms.

13

5 Dependency Structure

For reference, here is the dependency structure of my classes in this project:

Matroid

Oracle VectorSpace
BipartiteGraphPartitionMatroid

Matrix
Graph

Vector Compare

14

	Introduction
	Definition of a Matroid
	The Greedy Algorithm
	Matroid Variations
	Graphic Matroid:
	Linear Matroid:
	Partition Matroid:
	Bipartite Matroid:

	Dependency Structure

