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Figure 1: A Vamos matroid

“Matroids take ‘It’s useful to have multiple perspectives on this thing’ to a ridiculous extent.”

- anonymous


https://github.com/William-Thomas-Andrews/Matroid_Algorithms

1 Introduction

Algebraic structures that can be ‘solved’ by greedy algorithms can be abstracted into one algebraic structure: the matroid.
‘Solved’ in this context is referring to a set being independent, and ‘unsolved’ is when the set is dependent. The independence
and dependence differ for each algebraic structure, but always exist as a certain condition evaluating the arrangement and
existence of the elements in that structure. Some of the more common and easy to comprehend algebraic structures that are

used in matroids are: graphs, vector spaces, bipartite graphs, and partition sets. We will be reviewing all of these.

2 Definition of a Matroid

A matroid is defined as an ordered pair M (FE,7Z) where E is a finite set, referred to as the ground set, and Z is a collection of

independent subsets of E (each independent subset denoted by Zy, € Z, for some k € N) which satisfy the following properties:

e Property 1: () € T.
e Property 2: If 7; € 7 and Z, C 7y, then 7y € 7.

e Property 3: If 7; € 7 and 7, € 7 and |Z1| < |Z2|, then there is an element e € Z \ Z; such that Z; U {e} € T.

Property 1 states that the empty set is an independent subset of E. Property 2 states that if the set Z; is an independent
subset of F and the set 75 is a subset of Z;, then Z; is also an independent subset of E. Property 3 states that if the sets
7, and 7, are independent subsets of E and the cardinality (the dimension) of Z; is less than Z, then there is an element e
which is in Z; but not in Z; such that Z; U {e} € Z.

e Weight: Each element of a ground set can have a weight, and the weight of each set is the sum of the weights of each
element. This concept of weight is integral to our algorithms. Weight can be seen particularly in the graph example of

a matroid to be the weight of each edge of the graph.

e Span: The span of a set of elements is the set formed by the elements that can be written as combinations of the
elements that belong to the given set. In terms of linear algebra, the span of a set of vectors, also called linear span,
is the linear space formed by all the vectors that can be written as linear combinations of the vectors belonging to the

given set.
e Basis: An independent set of maximal size.

e Dimension: Dimension refers to the number of independent parameters required to specify an element in a space or a

system, or in other words: the number of elements of the independent set of maximal size.

e Oracle: The Oracle Model is a black-box model used to represent a matroid, providing a way to access information

about the matroid’s structure and properties.

Theorem: All bases of a matroid have the same cardinality.

Proof. Let us assume that there are two bases of a matroid M: By and B, with different cardinalities, and without loss of
generality, assume that |By| < |Bz|. Since B; and Bj are bases, then by the definition of a basis, they are independent and
cannot get any larger. However, by Property 3, there exists e € By\B; such that By U{e} € Z, which contradicts that By
cannot be a base which has a maximal size. Therefore either B; is not in fact a base, or our assumption is wrong and the two
bases have the same cardinality.
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3 The Greedy Algorithm

Here is an overview of the algorithm and the format for the code. We have separate class files for each algebraic structure
which we input to the Matroid class. The Oracle class serves one purpose: to tell us whether the inputted algebraic structure

is independent or not, given the specific structure’s conditions for independence. The Matroid class is listed below:

// The SET being the type of input set (e.g. Graph, or a Matrix)
// The ELEMENT being the corresponding element for each set (e.g. Edge for graphs, and Vector
for matrices)
template <class SET, typename ELEMENT>
class Matroid {
private:
SET ground_set;
SET solution_set;
Oracle<SET, ELEMENT> oracle;
public:
Matroid() : ground_set(SET()), solution_set(SET()) {}
Matroid (SET& input_set) : ground_set (SET(input_set)), solution_set (SET()) {}
Matroid (SET& input_set, SET& other_set) : ground_set (SET(input_set)),
solution_set (SET(other_set)) {
while (!(solution_set.get_vertices().empty())) {

solution_set.remove_element () ;

// Minimum Greedy Algorithm
SET min_optimize_matroid () {
ground_set.min_sort () ; // For minimum basis
while (ground_set.not_empty()) {
ELEMENT e = ground_set.top();
if (oracle.independent(solution_set, e)) solution_set.add_element (e);
ground_set.pop();
}

return solution_set;

// Maximum Greedy Algorithm
SET max_optimize_matroid () {
ground_set .max_sort () ; // For maximum basis
while (ground_set.not_empty()) {
ELEMENT e = ground_set.top();
if (oracle.independent (solution_set, e)) solution_set.add_element(e);
ground_set.pop();
}

return solution_set;




The mathematical version of this algorithm can be summarized with this figure in pseudo-code below. It accepts the
matroid M = (E,Z), and the weight function w(-) (outputs the weight for any given element input) which is essential for
the sorting algorithm max_sort. The algorithm returns the solution set of the maximum weighted spanning independent set,

given the input matroid.

Algorithm 1 The Matroid Greedy Algorithm (Maximization)

: Input: Matroid M = (E,Z), w(-).

: Output: Maximum element in A

: MAX_SORT(E)

S0

: while F # () do

e + top(F) > This gets the top (maximum) value of the ground set and assigns it to e.

if {e} US €7 then > This line is equivalent to asking the oracle if e added to S would still be independent.
add e to S

end if

pop(E) > This pops the top (maximum) value in the ground set

: end while

: return S

© NP
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To begin, we sort the ground set E, then we assign S to be the empty set (because it is the solution set we will append
to). Next, we begin the while loop which runs on the condition that E is not empty. Then we assign an element e to be the
top value (the maximal value in this case) of the ground set E. Since F is already sorted from line_3, this is a constant time
operation.

Then we enter an if condition that asks if {e} US € Z, or in other words, it asks if top element e appended to solution
set S is an independent set, since Z is a collection of independent subsets of E which satisfy Property 1, Property 2, and
Property 3. If true (if the addition of e to S would result in a still independent solution set), then we add e to S. If not,
then we continue. Regardless of the if condition, we pop the top value from E (which was the value that was assigned to e)
and continue to the beginning of the while loop again.

One interesting thing to note is that the set Z has a size so large, that it is not feasible to generate it in computation, and
hence only works theoretically. For example, let us look at a graphic matroid. In this sense, an independent graph has no
cycles and a dependent graph has cycles (dependency is based on cyclicity), and the span of a graph is the amount of different
nodes the tree reaches, so the set Z essentially represents all the different paths of the graph that contain no cycles (which
obey the basic three matroid properties by default). For reference, there is a ‘cycle’ if and only if there exists a non-empty
‘path’ in which the first and last vertices are equal. A ‘path’ is a finite or infinite sequence of edges which joins a sequence
of vertices which, by most definitions, are all distinct. The ‘weight’ of each edge is given by weight = w(u,v), where v and v
are nodes.

If we were to try to find all the paths that would make up Z, we would be operating with O(N!) time. This is not feasible.
Then how can we proceed? The answer is, instead of asking if {e} US € Z in 1ine 7 by creating Z and iterating through it,
we rather use an oracle and ask it if the given set {e} U S is independent working with only the set in front of us. With this
method we evaluate dependency based on some set characteristics, not based on creating and checking whether the input is
in Z. This is presumably much faster than creating and evaluating all of Z. The check for independence that the oracle uses

is different for each matroid (i.e. linear independence check for matrices, the cycle check using union find for graphs, etc.)

which we will dive deeper into when we disucss [Matroid Variationss However, besides the varying independence conditions,

the algorithm is the exact same for each type of set.

Now we will look at the algorithm in the code I implemented to see how this mathematical algorithm can actually be
adapted to be used in real life. In the matroid class, there are two functions for the algorithm: min_optimize matroid() and
max_optimize matroid(), which represent the greedy algorithm that minimizes the weight of a ground set, and the greedy
algorithm that maximizes the weight of a ground set. They are almost the same function, with the difference being one

minimizes and the other maximizes. Let’s take a look at the max_optimize matroid() function:



// Maximum Greedy Algorithm
SET max_optimize_matroid() {
ground_set.max_sort () ; // For maximum basis
while (ground_set.not_empty()) {
ELEMENT e = ground_set.top();
if (oracle.independent (solution_set, e)) solution_set.add_element (e);
ground_set .pop () ;
}

return solution_set;

The algorithm setup is quite simple. As seen from the Matroid class code given above, in the problem setup, we initially
create a ground set object ground_set of the same type as the input set of type SET (graph, matrix, bipartite graph, etc.),
and we also create a solution set object solution_set also of type SET. Next, we create an oracle object called oracle which
is an instance of the Oracle class with template inputs SET and ELEMENT, where ELEMENT is the corresponding element type
of the given SET.

The reason why we need ELEMENT to be specified in addition to SET is because all these setup operations are performed
during compile time, and to deduce the element type of a given SET is runtime behavior which happens after the compile
time procedure. That erroneous sequence of events is akin to, for example, taking a math test and not studying for a certain
section of it, expecting to use the answer sheet you will receive after taking the test to answer it during the test, so to avoid

this compile time error, the instantiation must be specified with both types
Oracle<SET, ELEMENT>

To reiterate, mathematically we have now a ground set (G, or ground_set), a solution set (S, or solution_set), and an
oracle (Oracle). All we do next is sort the ground _set and iterate through its top values, asking the oracle whether this new
addition yields a dependent or independent solution_set. If the new maximal (top) value e makes the solution_set now
dependent when appended to it, we discard that e. If the new maximal e makes solution_set still independent when appended
to it, we go ahead and append that e to solution_set. Regardless of the if statement, we still perform ground_set.pop()

to pop off that used e and begin the while loop again.

This same algorithm can maximize the independent basis for graphs, matrices, and many more structures, so long as the
structure is a matroid! Since the concept of a greedy algorithm is universal for matroids, we can generalize it to take in as
input different templated type inputs to perform the same algorithm on different structures. Isn’t that remarkable?
That little piece of code solves problems in graph theory, linear algebra, basic set theory, and many more fields. Now let’s

take a look at the specific uses of this algorithm and respective code implementations.




4 Matroid Variations

4.1 Graphic Matroid:

A graphic matroid M = (E,Z) is a matroid that uses a graph as its algebraic structure. Let our graph in this case be denoted
as G. The ground set E consists of the set of edges of the graph G, and Z is the set of all independent subsets of E. We
consider a set of edges to be dependent if there is a ‘cycle’ in the set. There is a ‘cycle’ if and only if there exists a non-empty
path in which the first and last vertices are equal. A path is a finite or infinite sequence of edges which joins a sequence of
vertices which, by most definitions, are all distinct. The weight of each edge is given by weight = w(u,v), where v and v are
nodes.

Example: Let graph G be

Figure 2: An example graph

with the ground set defined as E = {(f, g), (d, ), (d,e), (e,9), (¢, g), (b,e), (a,d), (a,b), (b,c)}. Although the whole ground
set of G spans G, it is also cyclic, so E is not an independent base.

Algorithm: This algorithm is essentially a modified version of Kruskal’s algorithm which has a time complexity of
O(E4log Ey), where E, is the number of edges in the graph. In this example, we will be maximizing the resulting matroid, or
in other words, creating a maximum spanning tree. We initially set the solution set S = (). We proceed by sorting the edges

in E to have the maximum value at the top, using the weight function w(u,v). This now results in

maz-sort(E) = {(c,9), (f,9), (d, f),(d,e), (a,b), (b,e), (a,d), (b, c), (e, 9)}.
and for simplicity, F < maz_sort(E)

Since FE is clearly not empty, we take top(E) = (¢, g), and check if (¢,g) added to S (S is currently an empty graph) is
independent. {(c,¢)}US = {(c,9)}, and (¢, g) does not create a cycle, so we add {(c,g)} to S, s0 S + {(¢,g)}US. To finish up
this loop, we pop edge (¢, g) out of E by calling pop(E), so now we have E = {(f,g), (d, f), (d, e), (a,b), (b, e), (a,d), (b,c), (e,9)},
and S = {(c,9)}

Now we can begin the next step in the while loop, since F is not empty. We take top(F) = (f, ¢) and since ({f,g)}U.S also
does not result in a cycle, we perform S < {(f, g)}US, and pop(E). Now we have, E = {(d, f), (d,€), (a,b), (b, e), (a,d), (b,c), (e, 9)},

and S = {(c,9),(f,9)}-

Let us continue until we reach the maximum spanning tree shown below (the edges in S are highlighted in red):
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Figure 3: A solved example graph

with E = {(a,d), (b,¢),(e,9)} and S = {(c,9),(d, f), (d,e), (a,b), (b,e)}. If we want to optimize this algorithm we can set
a marker value the number of nodes of the ground set F, and if the number of nodes in the solution set S reaches the number
of nodes in E, we stop because any new addition will cause a cycle (union find will find that we would be trying to connect
the same partition together).

However, let us continue to show how this algorithm works with this next iteration. Next we get the top value of E to be
(a,d), and since {(a,d)} U S results in a cycle by union find, we discard it and pop the top value of E. Then we do the same

for (b, ¢) and (e, g) which both result in cycles, so our final result is:

E=0and S = {(Cvg)a (d7 f)v (d’ 6)’ (a7b)7 (bae)}

and we have just found the maximum spanning tree of a graph! The minimizing version of this matroid algorithm finds

the minimum spanning tree of a graph.

Our Graph class is listed below, with some parts omitted for simplicity.

// The input set for a Graphic Matroid
class Graph {

private:
std::vector <Edge> edges;

UnionFind union_set;

public:
Graph(std::vector<std::tuple<Vertex, Vertex, Weight>> input_data)
union_set (UnionFind (input_data.size())) {
for (auto x : input_data) {
Edge e = Edge(std::get<0>(x), std::get<1>(x), std::get<2>(x));
this->add_element (e);

union_set.union_operation(e.get_left(), e.get_right());

// Matroid functions begin ------------------------ -
void min_sort () {

std::sort (edges.begin(), edges.end(), MinCompare<Edge>{});
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void max_sort () {

std::sort (edges.begin(), edges.end(), MaxCompare<Edge>{});

bool mnot_empty () {
return (!edges.empty());

Edge top() {
if (edges.empty()) { throw std::runtime_error("Cannot get first element of an empty
graph"); }
else {

return edges[edges.size () -1];

// If adding Edge e does not create a cycle then it will return true
bool is_independent (Edge& e) {
// If both sides of the edge are in the same partition, then it creates a cycle and

we return false because adding

e’ 1is not valid if we want to keep the graph
acyclic.

// Otherwise return true because both parititions are disjoint

return (!(union_set.find_operation(e.get_left()) == union_set.find_operation(e.

get_right ())));

void add_element (Edge e) {
edges .push_back(e);

union_set.union_operation(e.get_left(), e.get_right());

void pop () {
edges.pop_back () ;
}

// Matroid functions end --------------—---mmmmmmm e
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4.2 Linear Matroid:

The head of the Matrix class is listed below:

// The input set for a Linear Matroid
class Matrix {
private:
int rows;
int columns;

std::vector<Vector> data; // columns entries of row vectors

and the head of the Vector class is listed below:

class Vector {
private:
std::vector<double> data;

double weight = 0;

The Matrix class consists of a std::vector of objects of the Vector class, and each Vector contains a std::vector of
doubles, and a weight that gets adjusted to be the sum of the weighted elements from the Vector.
Example: Here is an example of the maximizing matroid algorithm used on a linear matroid. Let the matrix M be over

the integers:

1 01 01
M=10 3 4 00
0 00 2 3

Each column corresponds to an element e; in the ground set E = {e1, e9, 3, e4,e5}. Let the weight of each element be the

sum of the elements:

Element Column Vector Weight

=

el 0 1
_0_
o

€2 3 3
_O_
1

es3 4 5
_O_
o

€4 0 2
_2_
1

es 0 4
_3_




Algorithm: We first create the solution set S < () and sort M by weight. Now we have the sorted matrix:

mazx_sort(M) =

S = =
w O =
o w o
N oo
o O =

and for simplicity, M < mazx_sort(M).
we then append the top column vector ez to the empty matrix S because

1
{eg}US: 4
0

is linearly independent by basic linear algebra rules. So now S < {e3} U S. We continue to the next step and get

1 1
{65}US: 4 0
0 3

which is also linearly independent, so S < {e5} US. In the next step we try to add ey, but that would result in the matrix

{eg}US:

S =~ =
o w O
w O =

which is linearly dependent, so we do not change S and move on to the next column vector in the sorted matrix. We

eventually arrive at the maximum basis (the maximum spanning linearly independent matrix):

S:

o o =
O = =
w O =

In code, this is accomplished by the functions in our Matroid class. It is fascinating that the only difference between this
algorithm and the graph algorithm is the input set type (matrix vs. graph). The same procedure and functions are used

because they are essentially the same problem but in vastly different contexts.

The independence function (which uses Gaussian elimination and linear independence) for the Matrix class is as follows:

bool is_independent (Vector& v) {
// First to check if it is the zero vector
if (v.is_zero()) return false; // If yes, then it returns false because adding the zero
vector makes the matrix linearly dependent
Matrix A = *this;
A.add_element (V) ;
row_reduce (A);
int rank_A = rank(A);
int rank_this = rank(xthis);
if (rank_A == rank_this) return false;

return true;
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4.3 Partition Matroid:

A partition matroid is a matroid that is so abstract that it is just plain simple. In the way I implemented it, its data is made
up of a std::vector of my custom ParitionPair class which is just a modified std::tuple, with an extra attribute of an
int of the partition of the pair.

The set’s elements are partition pairs. The set’s independence check is based on the partitions of its elements: if all of the
set’s elements have different partitions, then the set is independent, and if at least one of the set’s elements have the same
partition as another element, then the set is dependent.

The PartitionMatroid class is listed (with some functions omitted for simplicity) below:

class PartitionMatroid {
private:
std::vector<PartitionPair> set;
public:
PartitionMatroid () {}
PartitionMatroid (std::vector<PartitionPair>& input) : set(input) {}

// Matroid functions begin ------------------------ -
void min_sort () {

std::sort(set.begin(), set.end(), MinCompare<PartitionPair>{});

void max_sort () {

std::sort(set.begin(), set.end(), MaxCompare<PartitionPair>{});

bool not_empty () {
return (!set.empty());

PartitionPair top() {
if (set.empty()) { throw std::runtime_error ("Cannot get first element of an empty
graph"); }
else {

return set[set.size () -1];

// If element e does not share the same partition with another element already in the
set then it will return true
bool is_independent (PartitionPair& e) {
for (int i = 0; i < set.size(); i++) {
if (e.get_partition() == set[i].get_partition()) { // if we are about to add an
element with the same partition as a previous element

return false;

}

return true;

void add_element (PartitionPair e) {

11
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set.push_back (e);

void pop() {
set.pop_back ();
}

// Matroid functions end —-—————————"-"—m - e

The algorithm is simply the same greedy algorithm listed multiple times above, that sorts the ground set F, then loops
through the top values and chooses whether or not independence is maintained. If independence is maintained with an addition

of a PartitionPair, then we add it. If not then we move on until we have evaluated all elements.

Figure 4: An example of a partition graph set
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4.4 Bipartite Matroid:

Our BipartiteGraph class contains the object
std::vector<std::vector<BipartiteEdge>> edges;

which consists of BipartiteEdge objects. This class is similar to our Graph class but has extra checks to make sure that
the bipartite property is maintained. A bipartite graph is a graph where the vertices can be divided into two disjoint sets such
that all edges connect a vertex in one set to a vertex in another set. There are no edges between vertices within any given

disjoint set. Below is an example of a bipartite graph:

~

Left set X Right se

If any of the elements from X were connected to another element from X, then the graph would not be bipartite (without

loss of generality for Y'). Below is an example of a graph that is not bipartite:

Algorithm: The algorithm is the same greedy matroid algorithm we have been using but with a different application. It is
very similar to the standard graph matroid but the dependency conditions are slightly different. The standard graph matroid
maintains independency by maintaining acyclicity, while the bipartite graph matroid maintains independency by making sure
that in a graph with two partitions, no vertices from one set are connected to the same set (this inherantly maintians acyclicity
t00).

First we get the inputs: the ground set based off the bipartite graph data F, and the weight function w(u,v). Then we
set the solution set S = () and sort the ground set.

To begin the body of the algorithm, we again start the for loop by checking if F is empty, and if not, we proceed. Then we
check if the top value from E added to the solution bipartite graph yields an acyclic bipartite graph (maintains independency),
and if so, we add it to the solution set S and pop the top element from E and repeat just like the past algorithms.

13



5 Dependency Structure

For reference, here is the dependency structure of my classes in this project:

{ Matroid

\ 4
{ Oracle } { VectorSpace } LPartitionMatroid} LBlpartlteGraph}

\4

L Graph }

Y

o
/ \L

{ Vector }

Compare }
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